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A NUMERICAL MODELLING STUDY OF THE FLOW AND 
SALINITY STRUCTURE IN THE GODAVARI ESTUmY, 
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SUMMARY 
The Godavari Estuary in Andhra Pradesh (a state bordering the east coast of India) communicates with the Bay of 
Bengal. Conditions in the estuary are characterized by a seasonally varying freshwater discharge and an intrusion 
of salt water from the bay dependent upon the flow associated with the semi-diumal component of the 
astronomical tide. A numerical model is applied to simulate the flow and salinity structures, which in the case of 
the Godavari Estuary have also been determined observationally and are documented in the literature. 
Observational data on the flow and salinity structure during two seasons are used in a comparison with theoretical 
results derived using a turbulent energy equation. Reasonable agreement is obtained between the model results and 
the observational data; in particular, streamlines are computed for the tidally averaged (or mean) component of the 
density-controlled flow. 
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INTRODUCTION 

The extent of the landward intrusion of saline water into a river estuary has a marked effect on the 
agricultural activity of adjacent land. Thus the distance of inland penetration may be expected to vary 
both seasonally and during the spring-neap tidal cycle. Because of this practical relevance, the 
development and application of a suitable numerical model are essential. The dynamical processes 
involving the interaction between river discharge and tidal currents are complex and lead to a series of 
distinctive types of estuary circulation. An account of these is given by Dyer' and Officer.' In this case 
the boundary between the fresh and saline water is sharp and well defined, with an almost total lack of 
mixing between the two layers. In the work presented here we have carried out simulations of the 
combined freshwater and tidal flow in the Godavari Estuary during the months of July and January and 
have compared these with observational data.3 

FORMULATION OF THE MODEL 

The origin 0 of a system of rectangular Cartesian co-ordinates is situated at the equilibrium level of the 
free surface of the water in the estuary. Ox points seaward from the landward end of the model estuary 
at x = 0; the seaward end is denoted by n = L and Oz is measured vertically upward from z = 0. The 
displaced position of the free surface at time t is located at z = ( (x ,  t )  and the position of the bed of the 
estuary is at z = -h(n). The breadth of the estuary at position x is dentoed by b(x). The Reynolds- 
averaged components of velocity and fluid density are denoted by (u, w) and p respectively, the latter 
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being determined by the local values of the temperature Tand the salinity S. The equation expressing 
the horizontal momentum balance in the model estuary then has the form 

where po is a constant reference density and KM is a diffusion coefficient for vertical momentum 
exchange by turbulent processes. 

The equation of continuity may be written in either of the equivalent forms 

a a - (bu) + - (bw) = 0 ,  ax az 
8~ a 
at ax b - + - (bHU) = 0 ,  

where H is the total depth l + h and Ei is the depth-averaged velocity given by 

-h 

(3 )  

(4) 

The density is related to the local temperature and salinity by a linear equation of state in which 

p = po(l - aT + 6S) ,  ( 5 )  

where the constants a and 6 have the respective values 2.0 x "C-' and 7.5 x ppt-'. 
The temperature and salinity are determined from transport equations of the form 

a a a 
- (bT) + - (buT) + - (bwT) = 
at ax az 

a a a 
- (bS) + - (bus) + - (bwS) = at ax az (7) 

where KT and Ks are diffusion coefficients for thermal and salinity exchange respectively. 

equation for the Reynolds-averaged turbulence energy density E. This has the form 
The parametrization of the turbulent processes is completed by the application of a transport 

a d a 
at ax dZ 
- (bE) + - ( h E )  + - (bwE) = bKM 

where KD and KE are diffusion coefficients for vertical exchange of density and turbulence energy 
respectively? Boundary conditions to accompany equation (8) lead to 

= O  a t z = - h a n d z = l .  (9) 
dE 
dZ 
- 

In the present work we prescribe that the diffusion coefficients are equal in value for all transfer 
processes, i.e. 

KM = KT = K,y = KD = KE = K ,  (10) 

and, as used by Johns: write 
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where 1 is a mixing length scale, l~ is a dissipation length scale and c is an empirical constant. The 
form used for the length scales is a unique feature of the present work and has been chosen to as to 
yield the best overall fit with the observational data reported by Rao et al.' 

A basic length scale 10 is defined by 

lo=k(z+h+zo)exp  - - [ ( Z h ) ' ] 7  

where k and zo are von Karman's constant and the roughness length of bottom elements respectively. In 
terms of this we write 

where 
dissipation length scale ID is defined by 

and y are constants and ho is a constant reference depth; thus, as z 3 -h, 1 -+ kzo. A 

The dissipation term in equation (8) is parametrized by writing 
,53/4,5'3f 2 

&=--. 
1D 

At the floor of the estuary we apply a no-slip condition and take 

u = O  a tz=-h .  (16) 
We prescribe zero applied surface wind stress and accordingly take 

dU 
- = 0  a t z = ( .  az 

Thus the fluid motion in the estuary is driven solely by boundary forcing applied at both ends of the 
estuary. 

In the present study, however, we use a boundary condition at x = 0 (landward end of the estuary) 
that is compatible with there being a freshwater discharge through the model estuary. This may be 
achieved by prescribing that 

ii + (f)lJ21 = 2 4  at x = 0, 

where uo is a constant velocity that determines the strength of the freshwater flow. Equation (18) is a 
crucial condition in the present modelling study, as its application implies that the tidal response in the 
estuary, which originates in the Bay of Bengal, passes freely through x = 0 in the form of a progressive 
wave and is not reflected by any upstream tidal barrier. At x = L (seaward end of the estuary) a 
boundary condition is required that supports the semi-diurnal tide in the estuary. This is prescribed in 
the form 

a t x = L ,  (19) 

where UL is a constant velocity, the values of which will be chosen so as to produce the correct 
amplitude for the semi-diurnal tide; a is the corresponding radian frequency (taken as 1.405 x 
1 0 - ~  s-'). 
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The boundary conditions for salinity and temperature during inflow and outflow are given by 

S =SO and T = TO a t x =  0, 
S = SL and T = TL at x = L, 

where u > 0, 
where u < 0. (20) 

Further conditions to accompany equations (6) and (7) require that 

ar as -=Oand-=O a t z = - h a n d z = l .  az az 

CO-ORDINATE TRANSFORMATION 

A transformation of the vertical co-ordinate into a new non-dimensional vertical co-ordinate a is 
introduced to facilitate the representation of the boundary conditions accurately at both the sea surface 
and the sea floor. This has the form 

z + h  
H 

a=- 

Thus a increases monotonically from a = O at the sea floor, z = -h(x)  to a = 1 at the sea surface, 
z = C(x, t) .  The vertical velocity in the a-co-ordinate, defined by 

is zero at both the sea floor and the sea surface. The new prognostic variables are defined by 

V = bHu 3 = bHS, = bHT, E = bHE. (24) 

Using x, a and t as new independent variables and substituting for p from equation (1) leads to 

aii a a al 
- + - ( u i i )  + - ( W E )  = -gbH -+gabHz J: da 
at ax aa ax 

as - gSbH2 1, dx do + gGbH 

Transformation of equation (2) leads to a purely diagnostic equation for w in which 

a a 
ax ao 
- [ ~ H ( u  - i i ) ]  + - (bH0)  = 0,  
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where w = 0 at a = 0 and a = 1. Equations (6) and (7) lead to 

a? a -  a - 
- + - ( u T ) + - ( w T )  =-- 
a t  ax aa 
as a -  a - l a  as 
- + - ( u S ) + - ( w S ) = - -  K -  . 
a t  a x  a0 H 2  a,( 80) 

Likewise equation (8) becomes 

aa 

The boundary conditions to accompany the set of transformed equations are now conveniently 
expressed at either a = 0 or a = 1. Equations (1 6) and (1 7) lead to 

(30) 
d U  

aa u = O  a t o = O ,  - = 0  a t a = l ,  

whereas equations (9) and (21) are equivalent to 

aE dT as -=O, -=Oand-=O a t c r = O a n d a = l .  
aa aa aa 

The depth-averaged velocity U is now given by U = sd uda. 

METHOD OF NUMERICAL SOLUTION 

The equation described in the earlier section will be solved on a finite difference grid in the x - a 
domain. We define 

x = ( i -  1 ) h ,  i =  1, 2, ..., m, 
j = 1, 2, . . . , n, 

Ax = L/(m - l ) ,  
(32) 

0 = ( j  - l)Aa, ACT= l / (n-  1). 

A discrete sequence of time instants is defined by 

t =pAt, p =0 ,1 ,2  ,.... (33) 
Computations are carried out on a horizontally staggered grid for which two distinct types of 
computational points are defined. 

The first of these, at odd points, are called (-points, at which (, w ,  S and T are computed. Those at 
even points are u-points, at which u and E are computed. We choose m to be odd so that the end points 
of the computations1 domain correspond to l-points. An unstaggered grid is used for computation in 
the vertical. The formal discretizations of equations follows those described by Johns4 and are not 
repeated here. It is, however, worthwhile to repeat the method of implementing equations (18) and 
(19), as this is crucial to the solution procedure. 

A conventional subscript notation to reference grid point values of the dependent variable and a 
superscript to denote the time level are used. In practice we apply equation (1 9) at x = L - Ax, which 
is a u-point. Furthermore, we evaluate the depth-averaged velocity at the lower time level, thus 
introducing an error O(At). This is consistent with the formal truncation error already present in our 
implicit evaluation of the vertical diffusion terms. Therefore we write equation (19) as 

rn r n - 2 )  = -2uL sin(at). (34) 
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Since c is not computed at i = m - 1, the value of it is replaced by the average of its values at the two 
adjacent c-points. Then equation (34) leads to 

Thus equation (35) yields a method of updating [ at x = L which utilizes an already known interior 
updated value of ( together with the depth-averaged velocity derived from the previous time step. 

Similarly, equation (18) leads to 

The method of implementation of equation (36) is similar to that of the above condition (35), except 
that it is applied at x = Ax which is a u-point. 

It is crucial that the finite difference analogue of equations (27) and (28) be correctly formulated and 
thus be compatible with equation (20). In order to achieve this, we use a discretization of the horizontal 
advection term in equations (27) and (28) based on one described by Roache.' This involves the 
application of a scheme of upstream differencing appropriate to a reversing flow and at the same time 
global conservation. Consequently, we obtain a strict fulfilment of the necessary requirement that any 
change in the total salinity and temperature in the estuary be balanced by the advective fluxes of 
salinity and temperature across x = 0 and x = L (the difhsive fluxes of salinity and temperature across 
the end points of the estuary are dropped from the formulation). 

The treatment of all terms in equation (28) is analogous to that of the corresponding terms in 
equation (25). Therefore we simply describe the basic form of the solution process to be applied to 

as d -+-(is) = 9, 
a t  a x  (37) 

where Y incorporates the effects of vertical advection and vertical diffusion. 
The finite difference descritization of equation (37) has the form 

where the terms in LZij are evaluated partly implicitly and partly explicitly. 
Analysis of equation (38) reveals that the horizontal advection scheme has a required upstream 

property that guarantees the positivity of computed values of s. When applied at i = 1 with 
fi$( > O,S!,j must be prescribed and is taken to be SO, in which case equation (38) determines rl. 
This situation corresponds to inflow at x = 0; $j can be determined from equation (38) without 
reference to Scij. The only procedural problem is the determination of ii;,,, which is not deducible 
from the updating of the velocity distribution, because this is only carried out for i = 2(2)m - 1. 
Accordingly we have simply taken 

(39) GP - -P 
0 , j  - ' 2 , j l  

which represents a simple extrapolation of the computed velocity from the estuary. Therefore the 
computed dynamics of the estuarian model will imply whether a condition of inflow or outflow exists 
at x = 0 and equation (38) will then determine the corresponding local salinity conditions. 

Similar comments may be made concerning the application of equation (38) for i = m. In this case 
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we have to assume 

c:+ , , j  = c: - , , j .  

Similar arguments can also be drawn for equation (27) when it is written in finite difference form. In 
the experiments we integrate the governing equations forward in time and with steady state forcing, 
continuing until the initial transient response is both radiated out of the analysis area and essentially 
dissipated by the action of friction. The remaining steady state fields will then represent the response to 
the prescribed steady state forcing. 

NUMERICAL EXPERIMENTS 

The Godavari Estuary (Figure 1)  is modelled by taking L = 26 km of the main channel of the estuary 
neglecting its tributaries. The breadth and mean depth are based upon topographical and bathymetric 
information documented by Rao et aL3 Thus over the length of the model estuary the breadth (taken as 
that of the central deep water channel) varies between 500 and 860 m and the mean depth varies 
between about 10 and 16 m. Results from two numerical experiments are described in this section that 
correspond to the freshwater flow conditions in the Godavari Estuary during the months of July and 
January. In both experiments the turbulent mixing parameters and y appearing in equations ( 1 2 H  14) 
are set equal to optimal values of 23 and 2.4 respectively; the reference depth ho is set equal to 16 m. 
The roughness length zo is set equal to 1 cm and, in accordance with the values used by Johns: the 
empirical constant c is taken to be 0.08. With 29 computational points in the horizontal, the grid 
increment Ax has a value of about 930 m. 

For the freshwater flow conditions during July we apply temperature and salinity boundary 
conditions (based on observations3) corresponding to TO = 26.5 “C, TL = 27.5 “C, SO = 0 and 
SL = 34.3 ppt. The freshwater and tidal flow conditions in the estuary are fixed by taking 
uo = 0.047 m s-l and UL = 0.4 m s-’. In order to ensure that our choice for the numerical value of UL 
leads to the correct amplitude of the vertical components of the semi-diurnal tide, we have performed a 
Fourier analysis of the surface elevation 5 in the form 

1 <L 2” 1tfL2” 

Figure 1.  Godavari Estuary with station locations. Broken lines represent appropriate limits of deep water areas 
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where U k  and csk are the amplitude and phase angle of the kth harmonic respectively and (0 is the mean 
value of the tidal elevation above equilibrium level. The principal interest here is in the value of the 
amplitude a1 of the primary harmonic. With a parameter setting appropriate to the high-discharge 
conditions prevailing in July, we find that a1 varies between about 0.41 m at x = 0 and 0.44 m at 
x = L. We also find that (6, = 124" at x = 0 and (bl = 99" at x = L, indicating that the phase of the 
tide takes about 5 1 min to propagate the 26 km comprising the length of the model estuary. Thus at all 
positions along the model estuary the time of occurrence of high (or low) water never differs by more 
than about 50 min. This is especially important, since the documented form of the observational data3 
implies that hgh  (or low) tide occurs simultaneously at all positions along the estuary. 

We show in Figure 2 the computed isolines of the salinity S, in parts per thousand (ppt), which 
correspond to the high-water phase of the tidal response. During this phase it will be noted that near- 
surface salt water has intruded more than 20 km along the estuary, producing salinities near x = 0 of 
the order of 4 ppt. This is in spite of a relatively strong seaward flow of near-surface fresh water which 
tends to oppose the inland penetration of saline water. It will be noted from Figure 2 that at a fixed 
section of the model estuary a surface layer having a depth of about 5 m tends to be well mixed, with 
the exception of the region corresponding to 9 < n < 19 km. The existence of this feature appears to 
be related to the local occurrence of a marked reduction in the depth of water near x = 16 km. Below a 
depth of 5 m we note that at a fixed cross-section in the channel the conditions are again well mixed, 
with water having a salinity of 12 ppt having penetrated as far as the landward extremity of the model 
estuary. The transition between the surface and the lower layer is characterized by a level at which there 
is a locally sharp curvature in the isohalines. This divides the associated flow field into two distinct 
regions, which are most effectively illustrated by delineating the corresponding velocity profiles in 
Figure 3. From this figure it will be noted that during the peak high-water phase a freshwater surface 
outflow is accommodated in a layer having a thickness not exceeding 3 m. The predicted existence of a 
strong surface outflow layer during the high-water phase may appear to contradict the view expressed 
by Rao et ~ 1 . ~  who imply that the associated flood tidal currents are directed landward at all depths. 
However, they do not point out that the peak flow currents at the surface persist for only a short time 
and that for most of the high-water phase the surface currents are eitehr very weak or actually in the 

0 0 ,-- 
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Figure 2. Computed salinity structure in July during the peak flood tide phase. The numbers on the contours refer to the salinity 
in parts per thousand 
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opposite direction. In our computations the peak flood tidal currents are confined to below a depth of 
about 3 m and attain their maximum values of about 0.6 m s-l in the mid-depths of the estuary. Thus, 
given a persistent seaward near-surface flow during the high-water phase, the corresponding well- 
mixed saline conditions must be due to a dynamical exchange with the lower and more saline layers. 

A similar analysis of the salinity distribution during the low-water or peak ebb phase of the tidal 
flow is shown in Figure 4. Here the combined strength of the ebb tidal and freshwater flow is seen to 
reduce the near-surface salinity to less than 4 ppt within about 15 km of the landward extremity of the 
estuary. Nearer the bed, water having a salinity of 12 ppt intrudes only to within 10 km of the landward 
limit. Compared with the flood tide case, it is also noteworthy that markedly reduced salinities are 
encountered near the mouth of the estuary as salt water flows into the open sea as a result of the strong 
surface seaward-directed currents existing during the peak ebb flow. This contrasts with the lower 
layers where salinities of the order of 26 ppt are encountered near the bed of the estuary. Accordingly, 
even during the ebb flow phase there appears to be an implied lower-layer inflow of water from the bay 
at the mouth of the estuary. 

The velocity profiles during the peak ebb phase are shown in Figure 5 .  These clearly indicate the 
presence of a strong surface outflow of water with current speeds in excess of 1.1 m s-'. In the lower 
layers of the flow, however, the currents are directed landward and attain speeds of the order of 
0.5 m s-', thus explaining the occurrence of relatively high-salinity water at these levels. Hence 
throughout the tidal cycle the currents in the lower layer are exclusively landward, a condition 
supported by the baroclinic contribution to the horizontal pressure gradient and which results from the 
longitudinal salinity gradient. 

In Figures 6(a) and 6(b) we reproduce the observed salinity structure during July as documented by 
Rao et aL3 Figure 6(a) refers to the peak flood flow situation in which high-salinity water penetrates to 
the landward extremityy of the estuary. Except for the isolated surface salinity feature predicted in the 
mid-estuary region, the overall form of the observed isohalines agrees reasonably with the computed 
structure shown in Figure 2. Admittedly, the computed 12 and 16 ppt isohalines do intersect the bed of 
the estuary downstream of its landward extremity whereas they should continue horizontally upstream 
of x = 0. Nevertheless, the computed 24 ppt isohaline intersects the estuary bed in approximately the 
correct longitudinal position, the agreement with the observed structure improving markedly near the 
point of communication with the bay. 

0 0  
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Figure 3. Computed velocity profiles in July during the peak flood tide phase 
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Figure 4. As Figure 2, but during the peak ebb tide phase 

Figure 6(%) refers to the ebb flow phase in which the seaward flow in the surface layers strongly 
inhibits the inland penetration of surface saline water. Here the agreement of the computed isohaline 
structure with the observed form again appears resonably satisfactory, especially in connection with the 
prediction of low-salinity surface water within 15 km of the landward extremity of the estuary. It must, 
however, be pointed out that the computed salinity fields compare more favourably with their 
observational counterparts during the ebb tide phase than during the flood phase. 

Given the composite nature of the fields shown in Figure 6, the overall quality of the comparison of 
the computed fields with observations suggests that it is worthwhile to evaluate the main features of the 
tidally averaged or mean density-controlled circulation. In this connection we delineate in Figure 7 the 
computed distribution of the mean isohalines in the estuary. This pattern shows a reduction in both the 
surface and near-bed salinity of more than 20 ppt over the length of the estuary. This pattern shows a 
reduction in both the surface and near bed salinity of more than 20 ppt over the length of the estuary. 
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Figure 5. As Figure 3, but during the peak ebb tide phase 
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Figure 6.  Observations of the salinity structure in July: (a) peak flood tide phase; @) peak ebb tide phase. The numbers on the 
contours refer to the salinity in parts per thousand 

At a fixed longitudinal position the outflow of freshwater has led to markedly reduced surface salinities 
in comparison with those at greater depths. This effect introduces a significant baroclinic component 
into the tidally averaged horizontal pressure gradient and induce a complex mean circulatory system in 
the estuary. 

- I S O L - _ -  I - -  - -L--L-- 1 - I - - - J 
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Figure 7. Computed mean salmity structure in July 
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An instantaneous streamfunction + for the volume transport may be defined as 

where I+II = 0 at z = -h. Thus the instantaneous volume flux in the estuary is given by the value of 
-(i+b)z=c. The contours corresponding to constant values of (+) are shown in Figure 8. In this figure 
the bed of the estuary again corresponds to ($) = 0. The mean volume flux in the estuary is given by 
the value of - ( (+)z=c),  which, consistently with our previous calculation, yields a net mean seaward 
transport of water amounting to 100 m3 s-'. Nevertheless, in the surface layer there is a predicted 
mean seaward volume transport of the order of 640 m3 s-' . Beneath the surface layer we note that 
there is a layer having a thickness of about 4 m in which there is no net mean transport of water. This 
region is characterized by the predicted existence of a closed mean circulation cell whose centre is 
located about 10 km from the mouth of the estuary. Farther upstream of this position the model 
circulations reveal the presence of a second circulation cell whose extent is only partly included in the 
present analysis area. These cells and the associated dynamical processes will evidently play a 
prominent role in the transfer of water properties between the near-surface and bottom layers of the 
flow field. Beneath this entrainment layer, we note the presence of a landward-directed mean flow in 
which there is a volume transport of the order of 640 m3 s-' . The net through volume transport of 
100 m3 s-' (in our calculation of which we have taken account of the variation in the position of the 
free surface during the tidal cycle) is the difference between the much larger, oppositely directed mean 
volume transports in the surface and bottom layers. 

The second experiment described here relates to the river flow during January when there is a 
negligible freshwater discharge. Tidal and freshwater flow conditions are fixed by choosing 
uo = 0.014 m s-' and u~ = 0.4 m s-l. Accordingly, with a reduced value of uo there will be an 
increased inland penetration of saline water from the bay and for a model estuary with a fixed length of 
26 km there must be a change in the boundary conditions on S at x = 0 consistent with this fact. With 
this in mind we therefore choose So = 10 ppt in contrast with SO = 0 in the previous experiment. All 
other temperature and salinity parameters remain unchanged. With this parameter setting, the mean 
volume flux through the estuary is found to be about 7 m3 s-', a value consistent with the negligible 
discharge during January reported by Rao et ~ 1 . ~  

-18 0 I -I 
0 0  1 0  8 0  11 0 1B 0 20 0 2L 0 
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-I6 O L -  
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Figure 8. Computed mean volume transport streamlines in July. The numbers on the contours refer to the volume transport 
rate in m3 s-' 
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Figure 9. As Figure 2, but m January 

In Figure 9 we show the isolines of S that correspond to the high-water phase of the tidal flow. 
During this flood period it will be noted that there is a predicted penetration of surface water with a 
salinity of 18 ppt to within 8 km of the landward extremity of the estuary. At a fixed longitudinal 
position the surface and bottom layers tend to be well mixed, with bottom water having a salinity of 
21 ppt penetrating to within 8 km of the landward extremity of the estuary. At this phase of the tide 
there is again an isolated surface feature at about 10 km from the mouth of the estuary characterized by 
a local minimum in the salinity of less than 14 ppt. In Figure 10 we show the salinity structure during 
the flow tide phase when the currents have their maximum ebb values. In comparison with the flood 
tide case, when the maximum salinity in the estuary is 34 ppt, the maximum value has now been 
reduced to 30 ppt, this being a consequence of the reduced input of salt from the bay. The measured 
salinity structure based upon the observations3 is shown in Figures 1 l(a) and 1 I@). A comparison with 

-16 5 -  
I 

Figure 10. As Figure 4, but in January 
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Figure 1 1 .  As Figure 6, but in January 

the corresponding computed structures depicted in Figures 9 and 10 indicates a satisfactory overall 
agreement. The other dynamical and salinity features for January are qualitatively similar to those 
prescribed for July. 

CONCLUSIONS 

Numerical experiments have been performed to simulate the tidal and salinity structure in the Godavari 
Estuary. Using a multilevel numerical model, tidal and turbulent mixing parameters have been chosen 
so as to yield the best overall agreement with observational data.3 With the corresponding parameter 
setting, an anlaysis has been made of the computed mean circulation in the estuary during seasons of 
both high and low freshwater discharge. 
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